PERILAKU GESER DAN DAKTILITAS DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI AKIBAT BEBAN LATERAL SIKLIK

Ming Narto Wijaya^{*1}, Wisnumurti¹ dan Defri Arya Utama²

¹Dosen / Jurusan Teknik Sipil / Fakultas Teknik/Universitas Brawijaya
 ² Mahasiswa / Jurusan Teknik Sipil / Fakultas Teknik/Universitas Brawijaya

Korespondensi: mingnw@ub.ac.id

ABSTRAK

Rawannya korban gempa bumi akibat keruntuhan dinding, konsep pembangunan ramah lingkungan, serta efisiensi kinerja merupakan tiga aspek yang menuntut adanya inovasi di bidang konstruksi. Sejalan dengan perkembangan teknologi, salah satu inovasi tersebut adalah panel jaring kawat baja tiga dimensi yang merupakan produk SIPs, sebagai alternatif material penyusun dinding. Penelitian kemudian dirancang menggunakan dua seri spesimen, yaitu M4 dengan tebal EPS 40 mm dan M8 dengan tebal 80 mm. Keduanya memiliki lebar dan tinggi dinding berturut-turut 600 mm dan 900 mm, dengan tebal mortar mutu K175 yang disemprotkan 35 mm pada kedua sisi dinding, yang kemudian diangkurkan pada balok sloof. Pemberian beban dilakukan secara siklik dengan protokol pengujian berdasarkan kontrol defleksi. Mengacu pada analisis eksperimental, diperoleh bahwa energi disipasi pada seri M4 hampir 20% lebih besar dibandingkan seri M8. Sedangkan rasio redaman ekuivalen pada kedua seri spesimen dinding panel relatif sama.

Kata Kunci : dinding panel, geser, daktilitas, siklik.

1. PENDAHULUAN

Rawannya korban gempa bumi akibat keruntuhan dinding, konsep pembangunan ramah lingkungan, serta efisiensi kinerja merupakan tiga aspek yang menuntut adanya inovasi di bidang konstruksi. Sejalan dengan perkembangan teknologi, salah satu inovasi tersebut adalah panel jaring kawat baja tiga dimensi yang merupakan produk SIPs, sebagai alternatif material penyusun dinding. Namun demikian, masih perlu adanya kajian ilmiah lebih dalam untuk mendapatkan parameter menginterpretasikan yang dapat karakteristik dinding panel.

2. TINJAUAN PUSTAKA 2.1. Dinding Panel

Dinding panel terdiri atas empat komponen utama, di antaranya adalah *expanded polystyrene* (EPS), berupa foam yang menjadi *core* dalam dinding.

Selanjutnya adalah wire mesh, yang merupakan rangkaian kawat baja dengan diameter 2,50 mm dan tegangan tarik putus mencapai 880 MPa. Yang ketiga adalah welded truss, berupa kawat baja sebagai connector antar layer wire mesh di kedua muka dinding panel. Dan terakhir adalah shotcrete, yang disemprotkan/sprayed pada panel dengan mutu setara K175 dan tebal 35 mm pada masing-masing muka dinding.

Gambar 1. *Structural Insulated Panels* Sumber: (Hebei Xuelong Machinery Manufacture Co., Ltd., 2015)

2.2. Karakteristik Dinding

Beberapa parameter yang dikaji guna menginterpretasikan karakteristik dinding mencakup:

Kapasitas Geser

Kapasitas geser secara teoritis dapat dianalisis berdasarkan persamaan dari penelitian-penelitian terdahulu, seperti:

ACI 318M (2014):

$$V_{n1} = A_{cv} \left(\alpha_c \lambda \sqrt{f'_c} + \rho_t f_y \right)$$
(1)

Di mana A_{cv} (in.²) adalah luas penampang dinding, α_c adalah koefisien *aspect ratio* yang bernilai 0,25 untuk $h_w/l_w \le 1,5$, bernilai 0,17 untuk $h_w/l_w \ge 2,0$, dan berlaku linear di antaranya. Sedangkan ρ_t adalah rasio tulangan vertikal.

Gulec & Whittaker (2011):

$$V_{n2} = \frac{1.5 \sqrt{f'_c} A_w + 0.25 F_{vw}}{\sqrt{\frac{h_w}{l_w}}} + \frac{0.20 F_{vbe} + 0.40 P_n}{\sqrt{\frac{h_w}{l_w}}}$$
(2)

Dalam persamaan dengan satuan *imperial* ini, A_w (in.²) adalah luas bruto penampang dinding, F_{vw} (lb) adalah kontribusi gaya tulangan vertikal dinding, F_{vbe} (lb) adalah kontribusi gaya tulangan vertikal komponen lain. ASCE/SEI 43 (2005):

$V_{n3} = v_n t_w d_1$ $v_n = 8.3 \sqrt{f'_c} - 3.4 \sqrt{f'_c} \left(\frac{h_w}{1} - 0.5\right)$

$$\rho_{se} = A \rho_{sv} + B \rho_{sh}$$
(4)
$$(4)$$

Dimana v_n (psi) adalah tegangan nominal dinding, ρ_{se} adalah konfigurasi rasio tulangan vertikal, ρ_{sv} horizontalnya ρ_{sh} . Sedangkan koefisien A dan B mrupakan konfigurasi *aspect ratio*. Untuk $h_w/l_w \le 0.5$ maka A bernilai 1 dan B adalah 0, untuk $h_w/l_w \ge 1.5$ maka A bernilai 0 dan B adalah 1, sedangkan pada kondisi $0.5 \le h_w/l_w \le 1.5$ maka A setara $1.5 - h_w/l_w$ dan B bernilai $h_w/l_w - 0.5$.

$$V_{n4} = V_c + V_s \tag{6}$$

Vc

$$= 0.29 \lambda \left(k_{\mu} \right) + \frac{P_{n}}{13.8 A_{g}} \sqrt{f'_{c}} t_{w} d_{1}$$

$$V_{s} = \frac{A_{sv} f_{y} d_{1}}{s_{v}}$$
(8)

 k_{μ} adalah koefisien untuk kebutuhan daktilitas, $A_g~(mm^2)$ adalah luas penampang bruto, $A_{sv}~(mm^2)$ adalah luas tulangan vertikal dinding, dan $s_v~(mm)$ adalah jarak antar tulangan vertikal dinding.

Paulay & Priestley (1992):

$$V_{n5} = V_c + V_s \tag{9}$$

$$V_c = v_c t_w d_1 \tag{10}$$

$$v_{c} = 0.27 \sqrt{f'_{c}} + \frac{P_{n}}{4 A_{g}}$$
 (11)

$$V_{s} = A_{sv} f_{y} \frac{d_{1}}{s_{v}}$$
(12)

Berdasarkan persamaan tersebut, v_c (MPa) adalah tegangan tekan beton, A_g (mm²) adalah luas penampang kotor dinding, dan A_{sv} (mm²) adalah luas tulangan vertikal dinding.

Barda, Hanson, & Corley (1977):

$$V_{n6} = \left(8\sqrt{f'_{c}} - 2.5\sqrt{f'_{c}}\frac{h_{w}}{l_{w}} + \frac{P_{n}}{4 l_{w} t_{w}} + \rho_{sv} f_{y}\right) t_{w} d_{1}$$
(13)

Di mana ρ_{sv} adalah rasio tulangan vertikal, dan d₁ (in.) adalah tinggi efektif

REKAYASA SIPIL / VOLUME 10, No.3 – 2016 ISSN 1978 - 5658

(3)

195

penampang dinding.

Sedangkan secara eksperimental, dapat diketahui berdasarkan beban lateral maksimum yang dicapai spesimen, $P_p(N)$.

✤ Kapasitas Lentur

Secara teoritis, kapasitas lentur dapat diketahui berdasarkan nilai momen dan beban lateral nominalnya, yang dianalisis dengan persamaan berikut:

$$M_{n} = C_{c} z_{c} + C_{s} z_{4} - T_{3} z_{3} - T_{2} z_{2}$$
(14)
$$M_{n}$$

$$P_n = \frac{h_n}{h_w}$$
(15)

✤ Mekanisme Kegagalan

Mekanisme kegagalan dinding panel dapat diinterpretasikan berdasarkan nilai FSSR dengan ketentuan berikut:

$$FSSR = \frac{M_n}{V_n h_w}$$
(16)

Kemudian, indeks FSSR tersebut berdasarkan ASCE/SEI 41 (2006) mekanisme kegagalan pada dinding dapat diklasifikasi menjadi:

 $\begin{array}{ll} FSSR \leq 0,6 & Kegagalan \ lentur \\ 0,6 < FSSR \leq 1,0 & Kegagalan \ lentur \ geser \\ FSSR > 1,0 & Kegagalan \ geser \end{array}$

Sedangkan secara eksperimental dapat diamati secara langsung berdasarkan retak yang timbul pada spesimen.

Defleksi Geser

Defleksi geser dapat dianalisis secara teoritis dengan persamaan berikut:

$$\Delta_{\rm sh} = \Delta_{\rm vuc} + \Delta_{\rm vcr} \tag{17}$$

$$\Delta_{\rm vuc} = \overline{A_{\rm cv} \, G} \tag{18}$$

$$\Delta_{\rm vcr} = \Delta_{\rm s} + \sqrt{2} \,\Delta_{\rm c} \tag{19}$$

$$\Delta_{\rm s} = \frac{\Lambda_{\rm rv} V}{A_{\rm cv} E_{\rm s}} \tag{20}$$

$$\Delta_{\rm c} = \frac{2\sqrt{2}\,V_{\rm n}}{t_{\rm w}\,E_{\rm c}} \tag{21}$$

Di mana Δ_{sh} (mm) adalah defleksi geser, Δ_{vuc} (mm) adalah defleksi geser pada kondisi sebelum adanya retak, dan Δ_{vcr} (mm) adalah defleksi geser saat dinding telah mengalami retak. Δ_s (mm) adalah defleksi akibat kelelehan tulangan, s_v (mm) adalah jarak antar tulangan vertikal, kemudian Δ_c (mm) adalah defleksi akibat retak beton.

Secara eksperimental dapat diketahui berdasarkan hasil pengujian yang dianalisis dengan persamaan berikut:

$$\Delta_{\rm sh} = \frac{d_{\rm w}}{2 \, l_{\rm w}} \, (\Delta_8 - \Delta_9) \tag{22}$$

Di mana d_w (mm) adalah panjang diagonal dinding, l_w (mm) adalah lebar dinding, Δ_8 (mm) adalah besar defleksi pada ekstensometer 1, dan Δ_9 (mm) adalah besar defleksi pada ekstensometer 2.

Kekakuan Geser

Nilai kekakuan geser secara teoritis dapat mengacu pada persamaan yang dikemukakan oleh ASTM E2126-05 berikut:

$$G' = \frac{V_n}{\Delta_{sh}} \frac{h_w}{l_w}$$
(23)

Di mana G' (N/mm) adalah kekakuan geser, V_n (N) adalah gaya geser nominal, Δ_{sh} (mm) adalah defleksi geser, sedangkan h_w (mm) dan l_w (mm) berturut-turut adalah tinggi dan lebar dinding. Sedangkan kekakuan geser berdasarkan hasil uji eksperimental dapat dihitung dengan rumus berikut:

$$k_{\rm sh} = \frac{P}{\Delta_{\rm sh}} \tag{24}$$

Di mana k_{sh} (N/mm) adalah kekakuan geser, P (N) adalah gaya lateral maksimum atau pada siklus yang ditinjau, dan Δ_{sh} (mm) adalah defleksi geser yang ditinjau.

✤ Daktilitas

Dalam penelitian ini, faktor daktilitas akan dianalisis berdasarkan parameter defleksi, yang diinterpretasikan dengan persamaan berikut:

$$\mu_{\Delta} = \frac{\Delta_{\rm u}}{\Delta_{\rm y}} \tag{25}$$

Dimana μ_{Δ} adalah faktor daktilitas yang dianalisis berdasarkan parameter defleksi, Δ_u (mm) adalah defleksi

196

maksimum, sedangkan Δ_y (mm) adalah defleksi leleh.

Dalam menentukan defleksi leleh digunakan dua metode yang dikemukakan oleh Robert Park, 1998. Satu metode menggunakan persamaan energi masuk/ *input energy* dan lainnya menggunakan interpolasi 75% beban lateral puncak.

Energi Disipasi

Besar energi disipasi yang mampu dicapai spesimen dinding panel diinterpretasikan berdasarkan selisih luas kurva selubung histeresis (*Area Under Curve*/AUC) pada saat pemberian beban/*loading* dan saat beban dihilangkan/ *unloading*, atau dapat ditunjukkan dengan persamaan berikut:

$$AUC = AUC_{loading} - AUC_{unloading}$$
(26)

Sebagai alternatif, luas kurva tersebut dihitung menggunakan Metode Simpson dan bantuan *software* AutoCAD Map 3D.

✤ Rasio Redaman Ekuivalen

Sedangkan rasio redaman ekuivalen dapat diketahui berdasarkan persamaan berikut:

$$\zeta_{eq} = \frac{1}{2\pi} \frac{E_D}{k\Delta_u^2}$$
(27)

Di mana ζ_{eq} adalah rasio redaman ekuivalen, E_D (Nmm) adalah energi disipasi pada ¹/₂ siklus, k (N/mm) adalah kekakuan elastis atau yang ditinjau, dan Δ_u adalah defleksi maksimum dinding pada puncak ¹/₂ siklus.

3. METODE PENELITIAN 3.1 Tahapan Penelitian

Tahapan penelitian dapat dilihat di Gambar 2.

3.2 Desain Spesimen

Dalam penelitian ini dirancang dua seri spesimen, yaitu M4 dengan tebal EPS 40 mm dan M8 dengan tebalnya 80 mm. Masing-masing seri terdiri atas tiga buah spesimen yang memiliki lebar 600 mm dan tinggi 900 mm. Kedua seri tersebut dilapisi dengan mortar setara mutu K175 yang disemprotkan setebal 35 mm pada kedua muka dinding.

Selanjutnya, kedua seri spesimen tersebut diangkurkan pada balok sloof dengan dimensi penampang 150 mm x 200 mm dan panjang 1 m. Mutu beton yang digunakan setara K225 dengan tulangan utama 4D10 mm, beugel Ø8-125 mm, serta angkur 8D10 mm.

Gambar 2. Bagan alir penelitian

Gambar 3. Desain spesimen seri M4

Gambar 4. Desain spesimen seri M8

3.3 Pengukuran Data

Serangkaian data yang dapat diperoleh melalui pengujian meliputi defleksi lateral total, beban lateral, defleksi lentur, defleksi geser, pengangkatan pondasi/*uplift*, geser pondasi, serta pola retak. Dan berikut adalah instalasi/*set up* instrumen uji:

Gambar 3.4 instalasi instrumen uji

Seperti ditunjukkan pada gambar di atas, instrumentasi uji yang dibutuhkan meliputi *loading frame, hydraulic pump, hydraulic jack, load cell,* LVDT, *dial gauge, digital strain meter, ekstensometer,* dan klem.

3.4 Protokol Pengujian

Dalam penelitian dinding panel ini, pengujian dilakukan dengan memberikan beban lateral siklik dengan protokol mengacu pada ASTM E2126-05 yang ditunjukkan pada tabel dan grafik berikut:

Tabel 3.1 Protokol pengujian

Pola	Step	Jumlah	Simpangan	Δ	δ
	•	Siklus	(%)	(mm)	(%)
	0		0.00	0.000	0.000
1	1	1	1.25	0.375	0.042
	2	1	2.50	0.750	0.083
	3	1	5.00	1.500	0.167
	4	1	7.50	2.250	0.250
	5	1	10.00	3.000	0.333
2	6	3	20.00	6.000	0.667
	7	3	30.00	9.000	1.000
	8	3	40.00	12.000	1.333
	9	3	60.00	18.000	2.000
	10	3	80.00	24.000	2.667
	11	3	100.00	30.000	3.333

Sumber: (ASTM E2126, 2005)

Gambar 3.5 Protokol pengujian **Sumber:** (ASTM E2126, 2005)

4. HASIL DAN PEMBAHASAN

4.1. Analisis Teoritis

✤ Kapasitas Geser Teoritis

Berikut merupakan hasil analisis kuat geser nominal teoritis sebagaimana telah dijelaskan:

Tabel 4.1 Analisis kuat	geser nominal teoritis
-------------------------	------------------------

	Kode	ACI 318M	Gulec & Whittaker	ASCE 43
No.	Spesimen	V_{n1}	V_{n2}	V_{n3}
		(N)	(N)	(N)
1	RCW41	62484.41	32736.90	103101.93
2	RCW42	60893.10	31516.67	98596.85
3	RCW43	63227.80	32736.74	102584.92
Rata-	rata	62201.77	32330.10	101427.90
4	RCW81	62104.01	32727.36	103308.98
5	RCW82	64525.82	33009.02	102900.33
6	RCW83	62908.37	33350.67	105575.01
Rata-	rata	63179.40	33029.02	103928.11
	Kode	FEMA 273	Paulay & Priestley	Barda et al.
No.	Kode Spesimen	FEMA 273 V _{n4}	Paulay & Priestley V _{n5}	Barda et al. V _{n6}
No.	Kode Spesimen	FEMA 273 V _{n4} (N)	Paulay & Priestley V _{n5} (N)	Barda et al. V _{n6} (N)
No.	Kode Spesimen RCW41	FEMA 273 V _{n4} (N) 89792.36	Viscource Viscource (N) 86349.79	Barda et al. V _{n6} (N) 111237.64
No.	Kode Spesimen RCW41 RCW42	FEMA 273 V _{n4} (N) 89792.36 87553.58	Paulay & Priestley V _{n5} (N) 86349.79 84238.31	Barda et al. V _{n6} (N) 111237.64 108099.34
No.	Kode Spesimen RCW41 RCW42 RCW43	FEMA 273 V _{n4} (N) 89792.36 87553.58 90261.83	Paulay & Priestley V _{n5} (N) 86349.79 84238.31 86759.79	Barda et al. V _{n6} (N) 111237.64 108099.34 111533.51
No.	Kode Spesimen RCW41 RCW42 RCW43 rata	FEMA 273 V _{n4} (N) 89792.36 87553.58 90261.83 89202.59	Paulay & Priestley Vn5 (N) 86349.79 84238.31 86759.79 85782.63	Barda et al. V _{n6} (N) 111237.64 108099.34 111533.51 110290.16
No.	Kode Spesimen RCW41 RCW42 RCW43 rata RCW81	FEMA 273 V _{n4} (N) 89792.36 87553.58 90261.83 89202.59 89547.52	Paulay & Priestley Vn5 (N) 86349.79 84238.31 86759.79 85782.63 86135.38	Barda et al. V _{n6} (N) 111237.64 108099.34 111533.51 110290.16 111057.12
No. 1 2 3 Rata- 4 5	Kode Spesimen RCW41 RCW42 RCW43 rata RCW81 RCW82	FEMA 273 V _{n4} (N) 89792.36 87553.58 90261.83 89202.59 89547.52 91374.68	Paulay & Priestley V _{n5} (N) 86349.79 84238.31 86759.79 85782.63 86135.38 87768.79	Barda et al. V _{n6} (N) 111237.64 108099.34 111533.51 110290.16 111057.12 112580.42
No. 1 2 3 Rata- 4 5 6	Kode Spesimen RCW41 RCW42 RCW43 rata RCW81 RCW81 RCW82 RCW83	FEMA 273 V _{n4} (N) 89792.36 87553.58 90261.83 89202.59 89547.52 91374.68 90677.02	Paulay & Priestley Vn5 (N) 86349.79 84238.31 86759.79 85782.63 86135.38 87768.79 87200.52	Barda et al. V _{n6} (N) 111237.64 108099.34 111533.51 110290.16 111057.12 112580.42 112649.79

Berdasarkan hasil analisis di atas, kedua seri spesimen memiliki nilai kuat geser teoritis yang relatif sama besar, walaupun keenam persamaan yang diacu menghasilkan nilai yang berbeda.

✤ Kapasitas Lentur Teoritis

Analisis kapasitas lentur ditunjukkan dengan nilai momen dan gaya lateral nominal yang ditampilkan **tabel 4.2.** Berdasarkan hasil analisis tersebut, besar gaya lateral nominal tidak memiliki perbedaan yang signifikan dengan kuat geser nominal persamaan ACI 318M.

 Tabel 4.2 Analisis momen nominal dan gaya

 lateral nominal teoritis

No	Kode	M _n	P _n	
190.	Spesimen (Nmm)		(N)	
1	RCW41	60169132.72	66854.59	
2	RCW42	58293008.55	64770.01	
3	RCW43	60060705.14	66734.12	
Rata-	rata	59507615.47	66119.57	
4	RCW81	60212021.94	66902.25	
5	RCW82	60345803.52	67050.89	
6	RCW83	61182700.18	67980.78	
Rata-	rata	60580175.21	67311.31	

* Mekanisme Kegagalan Teoritis

Secara teoritis, mekanisme kegagalan ditunjukkan dalam indeks FSSR dengan hasil berikut:

Tabel 4.3 Analisis FSSR

	Kode	FSSR			
No.	Spesimen	ACI 318M	Gulec & Whittaker	ASCE 43	
1	RCW41	1.070	2.042	0.648	
2	RCW42	1.064	2.055	0.657	
3	RCW43	1.055	2.039	0.651	
4	RCW81	1.077	2.044	0.648	
5	RCW82	1.039	2.031	0.652	
6	RCW83	1.081	2.038	0.644	

	Kode	FSSR			
No.	Spesimen	FEMA	Paulay &	Barda et	
	-	273	Priestley	al.	
1	RCW41	0.745	0.774	0.601	
2	RCW42	0.740	0.769	0.599	
3	RCW43	0.739	0.769	0.598	
4	RCW81	0.747	0.777	0.602	
5	RCW82	0.734	0.764	0.596	
6	RCW83	0.750	0.780	0.603	

Secara dominan spesimen dinding panel diprediksi mengalami kegagalan lentur yang kemudian diikuti geser. Sedangkan beberapa lainnya mengalami kegagalan lentur murni dan geser.

Tabel 4.4 Mekanisme kegagalan teoritis

Kode	Mekanisme Ko		agalan
Spesimen	ACI 318M	Gulec & Whittaker	ASCE 43
RCW41	Geser	Geser	Lentur- Geser
RCW42	Geser	Geser	Lentur- Geser
RCW43	Geser	Geser	Lentur- Geser
RCW81	Geser	Geser	Lentur- Geser
RCW82	Geser	Geser	Lentur- Geser
RCW83	Geser	Geser	Lentur- Geser
	Kode Spesimen RCW41 RCW42 RCW43 RCW81 RCW82 RCW83	Kode SpesimenMeka ACI 318MRCW41GeserRCW42GeserRCW43GeserRCW81GeserRCW82GeserRCW83Geser	Kode SpesimenACI S18MGulec & WhittakerRCW41GeserGeserRCW42GeserGeserRCW43GeserGeserRCW81GeserGeserRCW82GeserGeserRCW83GeserGeser

	Kode Mekanisme Kegagala			agalan
No.	Spesimen	FEMA 273	Paulay & Priestley	Barda et al.
1	DCW/41	Lentur-	Lentur-	Lentur-
1	Geser	Geser	Geser	
n	DCW/2	Lentur-	Lentur-	Lontur
2	KCW42	Geser Geser	Geser	Lentur
2	2 DCW42	Lentur-	Lentur-	Lontra
3	KCW45	Geser	Geser	Lentur
4	DCW91	Lentur-	Lentur-	Lentur-
4	KC W 81	Geser	Geser	Geser
5	DCW92	Lentur-	Lentur-	Lontur
3	KC W 82	Geser	Geser	Lentur
6	DCW02	Lentur-	Lentur-	Lentur-
0	KC W 85	Geser	Geser	Geser

✤ Defleksi Geser Teoritis

Analisis defleksi geser teoritis dapat dilakukan menggunakan persamaan yang dikemukakan oleh Park & Paulay, sehingga ditampilkan hasil berikut:

Tabel 4.5 Analisis defleksi geser teori
--

No	Kode	$\Delta_{\rm vuc}$	$\Delta_{ m vcr}$	$\Delta_{ m sh}$
140.	Spesimen	(mm)	(mm)	(mm)
1	RCW41	0.181	0.377	0.557
2	RCW42	0.183	0.380	0.563
3	RCW43	0.180	0.370	0.549
	Rata-rata	0.181	0.375	0.557
4	RCW81	0.181	0.380	0.561
5	RCW82	0.178	0.361	0.539
6	RCW83	0.180	0.378	0.559
	Rata-rata	0.180	0.373	0.553

Analisis defleksi geser teoritis di atas menunjukkan bahwa spesimen seri M4 mampu mencapai defleksi 0,557 mm, sedangkan seri M8 mencapai 0,553 mm.

* Kekakuan Geser Teoritis

Hasil analisis kekakuan geser teoritis sebagaimana telah dijelaskan ditampilkan pada tabel berikut:

No	Kode	Vn	$\Delta_{ m sh}$	G'
140.	Spesimen	(N)	(mm)	(N/mm)
1	RCW41	62484.41	0.56	157667.87
2	RCW42	60893.10	0.56	154552.38
3	RCW43	63227.80	0.55	164391.19
Rata-	rata			158870.481
4	RCW81	62104.01	0.56	154373.43
5	RCW82	64525.82	0.54	173820.57
6	RCW83	62908.37	0.56	155931.92
Rata-	rata			161375.309

Kedua seri spesimen dinding panel mencapai nilai yang relatif sama secara teoritis.

4.2. Analisis Eksperimental♦ Beban Lateral Maksimum

Berdasarkan kurva selubung histeresis maka dapat diperoleh besar beban lateral maksimum berikut:

No	Kode	Arah	$\mathbf{P}_{\mathbf{p}}$		V _n
NO.	Spesimen	Beban	(N)	(N)	(N)
1	RCW41	Е	-22020.00	20110.00	62484.41
		W	18200.00		
2	RCW42	Е	-23520.00	20310.00	60893.10
		W	17100.00		
3	RCW43	Е	-21340.00	22155.00	63227.80
		W	22970.00		
Rata-	rata			20858.33	62201.77
4	RCW81	Е	-17680.00	15630.00	62104.01
		W	13580.00		
5	RCW82	Е	-17210.00	17235.00	64525.82
		W	17260.00		
6	RCW83	Е	-24520.00	24170.00	62908.37
		W	23820.00		
Rata-	rata			19011.67	63179.40

Tabel 4.7 Beban lateral maksimum

Beban lateral maksimum yang dapat dicapai oleh dinding panel seri M4 dan M8 berturut-turut adalah 20.853,333 N dan 19.011,667 N.

Beban lateral maksimum yang dapat dicapai relatif lebih kecil dibandingkan hasil analisis kuat geser nominal secara teoritis. Ada beberapa dugaan terkait hal bahwa tersebut. Pertama. parameter dinding panel yang diuji tidak sesuai dengan parameter yang dimasukkan dalam persamaan kuat geser nominalnya. Pada spesimen. digunakan mortar sebagai penutup/pelapis dinding panel, sedangkan pada persamaan yang digunakan adalah beton.

Dan kedua, sistem tumpuan dinding panel pada balok sloof tidak bekerja secara optimum. Kedua dugaan tersebut tentunya perlu dikaji secara mendalam untuk memastikan kebenarannya. Sehingga perlu adanya catatan untuk kesinambungan penelitian selanjutnya.

✤ Defleksi Geser Eksperimental

Berdasarkan kurva selubung histeresis diperoleh defleksi geser eksperimeental yang dibandingkan dengan analisis teoritisnya sebagai berikut:

Tabel 4.8	defleksi	geser	ekst	perimenta	ıl
-----------	----------	-------	------	-----------	----

No.	Kode Spesimen	Arah Beban	$\Delta_{ m sh\ Eks.}$		Δ _{sh Teo.}
			(mm)	(mm)	(mm)
1	RCW41	Е	-0.532	0.495	0.557
		W	0.459		
2	RCW42	Е	-0.699	0.511	0.563
		W	0.324		
3	RCW43	Е	-0.794	0.776	0.549
		W	0.757		
Rata	rata			0.594	0.557
4	RCW81	Е	-0.105	0.132	0.561
		W	0.159		
5	RCW82	Е	-0.178	0.329	0.539
		W	0.479		
6	RCW83	Е	-0.231	0.166	0.559
		W	0.101		
Rata-rata			0.209	0.553	

Secara konsisten defleksi geser hasil uji eksperimental dinding panel seri M4 dapat dinyatakan mendekati hasil analisis secara teoritis. Akan tetapi, secara signifikan defleksi geser hasil uji eksperimental dinding panel seri M8 kurang dari hasil analisis teoritisnya.

* Kekakuan Geser Eksperimental

Kekakuan geser secara eksperimental ditunjukkan pada Tabel 4.9. akan Berdasarkan hasil analisis tersebut. kekakuan geser rata-rata yang mampu dicapai oleh spesimen dinding panel seri M4 dan M8 berturut-turut adalah 37,465 kN/mm dan 121,313 kN/mm. Kedua seri spesimen memiliki nilai kekakuan geser eksperimental lebih rendah yang dibandingkan analisis teoritisnya, terutama pada seri M4.

No	Kode	Arah	k _{sh}	Eks.	k _{sh Teo.}
140.	Spesimen	Beban	(kN/mm)	(kN/mm)	(kN/mm)
1	RCW41	Е	41.414	40.538	157.668
		W	39.663		
2	RCW42	Е	33.668	43.259	154.552
		W	52.850		
3	RCW43	Е	26.870	28.598	164.391
		W	30.327		
Rata	rata			37.465	158.870
4	RCW81	Е	168.187	126.666	154.373
		W	85.144		
5	RCW82	Е	96.559	66.296	173.821
		W	36.033		
6	RCW83	Е	106.181	170.976	155.932
		W	235.771		
Rata	rata			121.313	161.375

Tabel 4.9 Kekakuan geser eksperimental

Daktilitas

Sebagaimana telah dipaparkan bahwa penentuan defleksi leleh untuk analisis daktilitas akan mengacu pada dua metode yang dikemukakan oleh Robert Park, seperti tertera pada **Tabel 4.10** dan **Tabel 4.11**.

Berdasarkan hasil analisis di atas ditunjukkan bahwa nilai daktilitas kedua seri specimen tidak memiliki perbedaan yang signifikan dan dapat diklasifikasikan mengalami daktilitas parsial.

No	Kode	Arah	$\Delta_{\mathbf{y}}$	$\Delta_{\mathbf{u}}$		
INO.	Spesimen	Beban	n (mm)	(mm)	μ_i	μ
1	RCW41	Е	-4.051	-6.000	1.481	1.916
		W	2.553	6.000	2.351	
2	RCW42	Е	-3.822	-9.000	2.355	2.493
		W	3.421	9.000	2.631	
3	RCW43	Е	-3.843	-12.000	3.123	3.489
		W	3.113	12.000	3.855	
Rata-	rata					2.633
4	RCW81	Е	-2.579	-9.000	3.490	4.354
		W	1.725	9.000	5.219	
5	RCW82	Е	-7.211	-11.298	1.567	1.679
		W	6.298	11.285	1.792	
6	RCW83	Е	-3.564	-8.947	2.511	2.394
		W	3.928	8.945	2.277	
Rata	rata					2.809

Tabel 4.11 Daktilitas metode D

No	Kode Spesimen l	Arah	Δ_{y}	Δ_{u}		
190.		Beban	(mm)	(mm)	μ_i	μ
1	RCW41	Е	-3.542	-6.000	1.694	1.744
		W	3.344	6.000	1.794	
2	RCW42	Е	-3.579	-9.000	2.515	2.331
		W	4.192	9.000	2.147	
3	RCW43	Е	-5.098	-12.000	2.354	2.817
		W	3.659	12.000	3.279	
Rata-	rata					2.297
4	RCW81	Е	-3.291	-9.000	2.735	3.169
		W	2.498	9.000	3.603	
5	RCW82	Е	-7.031	-11.298	1.607	1.594
		W	7.133	11.285	1.582	
6	RCW83	Е	-5.092	-8.947	1.757	1.743
		W	5.175	8.945	1.728	
Rata	rata					2.169

Perbandingan nilai daktilitas kedua metode ditampilkan pada grafik berikut:

Gambar 4.19 Perbandingan daktilitas metode B dan D

Pada metode B spesimen dinding panel seri M4 dan M8 memiliki daktilitas berturut-turut sebesar 2,633 dan 2,809. Sedangkan pada metode D spesimen dinding panel seri M4 memiliki daktilitas sebesar 2,297 dan seri M8 sebesar 2,169. Jika diperhatikan, antara kedua seri spesimen dinding panel baik pada metode B maupun D, tidak terlihat perbedaan yang signifikan, sehingga dapat dinyatakan bahwa kedua seri spesimen tersebut memiliki nilai daktilitas yang relatif sama, dan diklasifikasikan sebagai komponen struktur dengan daktilitas parsial.

Energi Disipasi

Besar energi disipasi yang mampu dicapai seluruh spesimen yang diperoleh berdasarkan dua metode ditunjukkan dalam tabel berikut:

Tabel 4.12 Energi disipasi

	Kode -	Metode Simpson	AutoCAD Map 3D	E _D
No.	Spesimen	E _{D Sim}	E _{D Map}	_
		(kNmm)	(kNmm)	(kNmm)
1	RCW41	147.788	238.603	193.195
2	RCW42	217.356	216.480	216.918
3	RCW43	429.405	491.164	460.284
Rata	rata	264.850	315.416	290.133
4	RCW81	173.320	171.656	172.488
5	RCW82	287.994	353.775	320.884
6	RCW83	242.489	234.454	238.471
Rata	rata	234.601	253.295	243.948

Dari tabel di atas dapat dilihat bahwa beberapa luas kurva energi disipasi spesimen dinding panel hasil analisis kedua metode memiliki simpangan yang cukup jauh. Walaupun demikian, berdasarkan hasil analisis yang dilakukan diperoleh energi disipasi rata-rata pada seri M4 dan M8 secara berturut-turut adalah 290,133 kNmm dan 243,948 kNmm. Perbandingan hasil analisis energi disipasi menggunakan Metode Simpson dan bantuan *software* AutoCAD Map 3D ditampilkan pada grafik berikut:

Gambar 4.20 Perbandingan energi disipasi

Rasio Redaman Ekuivalen

Berdasarkan besar energi disipasi dan defleksi yang diperoleh per ½ siklus maka dapat diperoleh rasio redaman ekuivalen yang ditampilkan pada Tabel 4.13 berikut.

Tabel 4.13 Rasio redaman ekuivalen

No.	Kode	$\Delta_{\mathbf{u}}$	۶
	Spesimen	(mm)	eq
1	RCW41	6.000	0.016
2	RCW42	9.000	0.023
3	RCW43	12.000	0.025
Rata-rata			0.021
4	RCW81	9.000	0.024
5	RCW82	12.000	0.025
6	RCW83	9.000	0.023
Rata-	0.024		

Berdasarkan hasil analisis di atas, diperoleh besar rasio redaman ekuivalen rata-rata hasil uji eksperimental dinding panel pada seri M4 dan M8 secara berturut-turut adalah 0,021 dan 0,024. parameter lain berupa massa dan frekuensi natural struktur yang ditinjau.

5. PENUTUP

5.1 Kesimpulan

Berdasarkan hasil penelitian perilaku geser dan daktilitas dinding panel jaring kawat baja tiga dimensi akibat beban lateral siklik sebagaimana telah dipaparkan sebelumnya, dapat ditarik kesimpulan sebagai berikut:

- Berdasarkan hasil pengujian, spesimen dinding panel seri M4 dapat dinyatakan mengalami kegagalan lentur-geser. Namun tidak demikian dengan seri M8 yang mengalami kegagalan angkur.
- 2. Kedua seri spesimen dinding panel memiliki nilai daktilitas yang relatif sama, dan diklasifikasikan mengalami daktilitas parsial.
- Besar energi disipasi yang mampu dicapai spesimen dinding panel seri M4 hampir 20% lebih besar dibandingkan seri M8.
- 4. Besar rasio redaman ekuivalen rata-rata pada kedua seri spesimen relatif sama.

REKAYASA SIPIL / VOLUME 10, No.3 - 2016 ISSN 1978 - 5658

6. DAFTAR PUSTAKA

- ACI Committee 318. (2014). Building Code Requirements for Structural Concrete (ACI 318M-14) and Commentary (ACI 318RM-14). Farmington Hills, Michigan: American Concrete Institute.
- ASCE/SEI 41. (2006). Seismic Rehabilitation of Existing Buildings. Reston, Virginia: American Society of Civil Engineers.
- ASCE/SEI 43. (2005). Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities. Reston, Virginia: American Society of Civil Engineers.
- ASTM E2126. (2005). Standard Test Methods for Cyclic (Reversed) Load Test for Shear Resistance of Walls for buildings. West Conshohocken, Pennsylvania: ASTM International.
- Barda, F., Hanson, J. M., & Corley, W. G. (1977). Shear Strength of Low-Rise Walls with Boundary Elements. *American Concrete Institute Journal*, 149-202.
- Benayoune, A., Samad Abdul, A. A., Trikha, D. N., Ali, A., & Akhand, A. M. (2004). Precast Reinforced Concrete Sandwich Panel as an Industrialised Building System. *International Conference on Concrete Engineering and Technology University Malaya*, 1-6.
- FEMA 273. (1997). NEHRP Guidelines for the Seismic Rehabilitation of Buildings. Wahington, D.C.: Federal Emergency Management Agency.

- Gulec, C. K., & Whittaker, A. S. (2011). Performance-Based Assessment and Design of Squat Reinforced Concrete Shear Walls. *ACI Structural Journal*, 80-89.
- Hebei Xuelong Machinery Manufacture Co., Ltd. (2015, 11 3). 3D Panel Machine, 3D Wire Mesh Panel Machine, 3D Panel Construction Plant. Diambil kembali dari Alibaba: https://3dpanelmachine.en.alibaba.com/produ ct/60114474532-221070830/3D_panel_mach ine_3D_wire_mesh_panel_machine_3D_pan el_construction_plant.html
- Park, R. (1988). Ductility Evaluation from Laboratory and Analytical Testing. *Ninth World Conference on Earthquake Engineering* (hal. 605-616). Tokyo: Ninth World Conference on Earthquake Engineering.
- Paulay, T., & Priestley, M. J. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings. New York, USA: John Wiley & Sons, Inc.
- SNI 1726. (2002). *Tata Cara Perencanaan Ketahanan Gempa untuk Bangunan Gedung.* Jakarta: Badan Standardisasi Nasional.
- SNI 7392. (2008). Tata Cara Perencanaan dan Pelaksanaan Bangunan Gedung Menggunakan Panel Jaring Kawat Baja Tiga Dimensi (PJKB-3D) Las Pabrikan. Jakarta: Badan Standardisasi Nasional.
- The Indonesian Society for Geotechnical Engineering & ABS Consulting. (2006). *The Mw 6.3 Java, Indonesia, Earthquake of May 27, 2006.* Yogyakarta: Earthquake Engineering Research Institute.